
01

Journal of Information and Computing

Research on Cross-platform Software Development and Design
Bbased on C++ Language

Zhou Kexin
Metron HK Limited, Kowloon, Hong Kong

Abstract: With the advent of the mobile Internet era, the demand for cross-platform software among users is increasing.

Based on the C++ language, this paper studies the development and design process of cross-platform software. Firstly,

the main advantages of cross-platform development are analyzed, and the technical route for cross-platform development

based on C++ is expounded. Then, the cross-platform software development process is optimized from the requirements

analysis, architecture design, coding implementation, testing and release and other aspects. Finally, the feasibility and

effectiveness of the proposed method are verified through real project cases. The research shows that cross-platform

software development based on C++ can significantly improve the development efficiency, reduce development cost, and

broaden the application scope, warranting its promotion for application in more scenarios.

Keywords: C++; Cross-platform; Software development; Mobile application; Development process

Ⅰ. Introduction

In recent years, with the rapid popularization of

smart phones, tablets and other mobile terminal devices,

the mobile application market has shown an explosive

growth trend. At the same time, iOS, Android and other

mobile operating systems coexist, and software developers

are facing the problem of developing multiple versions of

applications for different platforms, with heavy workload,

low efficiency and high maintenance costs. Therefore,

the cross-platform software development technology

comes as The Times require. Through the concept of "one

coding, multiple operations", the cross-platform software

reuse is realized to improve the development efficiency

and quality.

As an underlying system-level language, C++ is

widely used in cross-platform software development due

to its high-performance and portable characteristics. Many

mainstream cross-platform development frameworks, such

as Qt, Cocos2d-x, etc., are implemented based on C++.

This paper will focus on the application of C++ language

in cross-platform software development, systematically

elaborate the cross-platform software design and

development process based on C++, and analyze and

demonstrate combined with actual project cases, in order

to provide some reference for the industry.

Ⅱ. Cross-platform software development process
optimization based on C++

A. Requirements analysis and prototyping design stage

Any successful software product comes from

accurate demand analysis and domain modeling. The same

is true for cross-platform software development, which

requires in-depth research on user needs at the initial

stage of the project, and clarifying the target platform and

functional positioning. Demand analysis is a top priority

in determining the feasibility of a cross-platform solution.

Through questionnaire survey, user interview, competitive

product analysis and other methods, we can fully

understand the real needs and pain points of users, what

are the target user groups of the product, and what the core

problems are expected to be solved. On the basis of clear

requirements analysis, the software prototype design. A

good prototype can intuitively present the interface layout,

human-computer interaction, and business process of the

software. It is a programmatic document to guide cross-

02

Volume 2, Issue 1

platform development. Using Axure, Sketch and other

professional prototype tools, the high-fidelity prototype

was designed, and reached agreement through repeated

review and modification, laying the foundation of cross-

platform development.

B. Cross-platform framework selection and training

The implementation of cross-platform software

development is inseparable from an excellent cross-

platform development framework. Choosing the

appropriate development framework is the key move to

improve the engineering efficiency and guarantee the

software quality. At present, the mainstream C++ cross-

platform development frameworks in the industry include

Qt, wxWidgets, Cocos2d-x, etc., which have their own

characteristics in the development of language, graphics

library, tool chain, performance, ecological support and

other aspects. Technology selection should be based on

the technical background and project needs of the team,

and conduct a comprehensive evaluation according to

the learning cost, development efficiency, operation

performance, platform coverage, community activity and

other dimensions. For example, Qt is widely popular in

enterprise application development with its powerful UI

capabilities, rich API support, and an active developer

community. After selecting the framework, technical

training should be organized in time to systematically

learn the architecture, core mechanism and development

specifications of the framework, so as to ensure that

the development team understands the usage of the

framework as soon as possible and avoid various common

traps and misunderstandings.

C. Modular development and unit testing

Cross-platform projects often have complex

functions and a large amount of code, which puts forward

higher requirements for development efficiency and

quality control. Using the idea of modular development,

the complex system is divided into multiple modules

with independent functions and low coupling degree,

which is not only conducive to the division of labor and

cooperation, but also conducive to unit testing. Through

further packaging on the basis of the framework, a

set of unified external interface is designed for each

module to call. Use the design mode to optimize the

module structure and improve the readability and

maintainability of the code. And through code review

and other ways, timely find and solve potential cross-

platform compatibility problems. Another big advantage

of modularity is testability. Using the unit test framework

such as GoogleTest, Boost.Test to conduct comprehensive

unit testing of key modules and interfaces. Write complete

test cases to verify the logic of the code from the forward,

reverse, boundary, abnormal and other perspectives. Unit

testing is used as the "insurance link" in the development

process to detect and repair defects early, and ensure

software quality from the code source.

D. Platform integration and joint modulation test

After modular development and unit testing, each

functional module has been basically completed. The next

step is to integrate these modules into each target platform

for joint debugging and integration testing. Cross-

platform software often encounters various environmental

dependence and compatibility problems in the integration

stage, which requires developers to have rich debugging

experience and strain ability. For example, file systems,

multithreading, and network communication mechanisms

may differ between different platforms, requiring

conditional compilation and adding platform-related

macro definitions. For another example, the adaptive

effect of the UI layout on different sizes of screens

requires repeated debugging to achieve the best effect. As

a result, contingency testing is often the most challenging

part of cross-platform development, which requires a lot

of time and effort. When necessary, extreme scenarios

such as weak grid and low power should be simulated

to test the fault tolerance and stability of the software.

Through careful testing, the problems in the integration

stage are exposed and corrected in time, laying a solid

foundation for the subsequent multi-platform release.

E. Multi-platform packaging and release

When the software function is stable and the joint

03

Research on Cross-platform Software Development and Design Bbased on C++ Language

adjustment test passes, it enters the packaging release

stage. Different platforms have different release processes

and specifications, such as iOS to be uploaded to App

Store and Android to be released to major application

markets. Different platforms have different requirements

for the signature, reinforcement, and review of installation

packages, and developers have to customize the packaging

scripts and profiles one by one. For example, an iOS

application must be signed with a certificate issued by

Apple, and a Android application requires code confusion

and reinforcement. At the same time, the application

shelf process of different platforms varies greatly, with

the review cycle ranging from several days to several

weeks. Therefore, it is necessary to make multi-platform

packaging planning in advance, and closely cooperate

with relevant operation and marketing departments

to timely update the software version information,

innovative function highlights, and prepare publicity

materials. Reasonable arrangement of the release pace,

we should not only balance the development of resources,

but also take care of the user experience. At the same

time, it pays attention to the collection and sorting of user

feedback, tracks the data indicators of key platforms, and

accumulates first-hand information for the subsequent

iterative optimization.

Ⅲ. Case analysis of the cross-platform software
development projects

The au thors t eam recen t ly comple ted the

development of a cross-platform education application.

Here, we take this project as an example to analyze

the engineering practice of cross-platform software

development.

The project is aimed at primary and middle

school students, and provides online exercises, exam

models and other functions. It needs to be launched on

three platforms: PC end, mobile end and web end, and

realize account exchange and data synchronization. The

project uses C++ as the main development language and

conducts cross-platform implementation based on the Qt

framework. First of all, in the early demand analysis link,

the functional needs and non-functional requirements of

each platform are defined through questionnaire survey,

user interview, competitive product analysis and other

methods. According to the UI interaction characteristics

of different platforms, three prototype schemes of Mobile,

Pad and Desktop were designed respectively. Then,

organize the special training of Qt framework, focusing

on learning its building system, signal slot mechanism,

Model/View framework, Qt WebEngine module, etc.,

so as to make technical preparations for the subsequent

modular development.

In general, the project is designed according to

the architecture mode of "core library + platform plug-

in". Among them, the core library includes the business

model, data storage, network communication and other

functions unrelated to the platform. On the basis of the

core library, the interface layer plug-in corresponding to

each platform is developed. Thanks to the cross-platform

feature of the Qt framework, more than 80% of the

code achieves multiplexing. According to the different

requirements of different platforms, macro definition

and conditional compilation mechanisms are adopted for

personalized processing. At the same time, GoogleTest

was introduced to improve the unit test of the core library,

which significantly improved the code quality. Platform

integration and joint adjustment are the difficulties of the

project. For example, when the iOS platform connects

with the system album, message push and other services,

we encountered a lot of pits. You need to consult the

Apple developer document and debug it for many times.

After nearly a month of joint adjustment, the project has

finally run steadily, and has been successively launched

on Windows, macOS, iOS, Android, Web and other

platforms. After the launch, I continued to pay attention

to the operation data of various platforms, collect user

feedback, and make iterative plans to carry out a new

round of development according to the needs of business

development.

Through the practice of this project, the author

realized that the advantage of cross-platform software

04

Volume 2, Issue 1

development is that the integration of multi-platform

version into one project through highly reuse code,

significantly improving the efficiency of development

and maintenance. But at the same time, cross-platform

projects also put forward higher requirements on the

complexity of technology and management, requiring

the development team to have full-stack skills and be

familiar with the differences of different platforms. Only

by building an agile and efficient R & D system can we

navigate the increasingly complex cross-platform software

engineering.

Ⅳ. Epilogue

In conclusion, the cross-platform software

development based on C++ language can achieve the

ideal goal of "Write once, run anywhere". By optimizing

the development process and rationally using the cross-

platform framework and tools, it can not only significantly

reduce the development and maintenance costs, but

also broaden the coverage of the software, laying the

foundation for maximizing the vitality and commercial

value of the software. Of course, cross-platform

development is not a "silver bullet". While ensuring the

development efficiency, we should also be alert to the

risk of inconsistent experience brought about by platform

differentiation. Only by accurately doing the demand

analysis well, and taking into account the personalized

design of different platforms, can we go more steadily

and further on the cross-platform road. In the future,

with the development of a new generation of cross-

platform frameworks such as Flutter and React Native, the

cross-end forms of software will be more abundant. As

developers, we need to keep pace with The Times, explore

new practices and new opportunities for cross-platform

development, and bring more extreme product experience

to users with innovative technologies.

References

[1] �Kak A C .Programming with Objects: A Comparative

Presentation of Object-Oriented Programming with C++

and Java[M]. Hoboken: John Wiley & Sons, Inc, 2011.

[2] �Smith E. Introduction to the Tools of Scientific

Computing[M]. Cham: Springer, 2021.

[3] �Robert P, Matú D. Implementation C++/QT framework

for CAN communication[J]. Transportation Research

Procedia, 2023, 74:946-953.

©2025. This article is copyrighted by the author and Hong

Kong Science and Technology Publishing Group. This

work is licensed under a Creative Commons Attribution 4.0

International License.

http://creativecommons.org/licenses/by/4.0/

	

